Что такое ЭДС источника тока? Что такое электродвижущая сила Означает эдс

Если замкнуть между собой полюса заряженного конденсатора, то под влиянием накопленного между его обкладками, во внешней цепи конденсатора в направлении от положительного полюса к отрицательному начинается движение носителей заряда - электронов.

Однако в процессе разряда поле, действующее на движущиеся заряженные частицы, быстро ослабевает до полного исчезновения. Поэтому возникшее в цепи разряда протекание электрического тока имеет кратковременный характер и процесс быстро затухает.

Для длительного поддержания тока в проводящей цепи используются устройства, неточно называемые в быту (в строго физическом смысле это не так). Чаще всего такими источниками служат химические батареи.

Вследствие происходящих в них электрохимических процессов на их клеммах происходит накопление разноименных Силы не электростатической природы, под действием которых осуществляется подобное распределение зарядов, называют сторонними силами.

Уяснить природу понятия ЭДС источника тока поможет рассмотрение следующего примера.

Представим себе проводник, находящийся в электрическом поле, как показано ниже на рисунке, то есть таким образом, что внутри него также существует электрическое поле.

Известно, что под воздействием этого поля в проводнике начинает протекать электрический ток. Теперь возникает вопрос о том, что происходит с носителями заряда, когда они достигают конца проводника, и будет ли этот ток оставаться неизменным с течением времени.

Мы можем легко сделать вывод, что при разомкной цепи в результате влияния электрического поля заряды будут накапливаться на концах проводника. В связи с этим не будет оставаться постоянным и движение электронов в проводнике будет очень кратковременным, как показано ниже на рисунке.

Таким образом, для того, чтобы поддерживать в проводящей цепи постоянное протекание тока, эта цепь должна быть замкнута, т.е. иметь форму петли. Однако для поддержания тока даже это условие не является достаточным, так как заряд всегда движется в сторону меньшего потенциала, а электрическое поле всегда делает положительную работу над зарядом.

Теперь после путешествия по замкнутой цепи, когда заряд возвращается к исходной точке, где он начал свой путь, потенциал в этой точке должен быть таким же, каким он был в начале движения. Однако протекание тока всегда связано с потерей потенциальной энергии.

Следовательно, нам необходим некий внешний источник в цепи, на клеммах которого поддерживается разность потенциалов, увеличивающая энергию движения электрических зарядов.

Такой источник позволяет осуществить путешествие заряда от более низкого потенциала к более высокому в направлении, противоположном движению электронов под действием электростатической силы, пытающейся протолкнуть заряд от более высокого потенциала к более низкому.

Эту силу, заставляющую заряд двигаться от более низкого к более высокому потенциалу, принято называть источника тока - это физический параметр, который характеризует работу, затраченную на перемещение зарядов внутри источника сторонними силами.

В качестве устройств, обеспечивающих ЭДС источника тока, как уже упоминалось, используются аккумуляторы, а также генераторы, термоэлементы и т.д.

Теперь мы знаем, что за счет своей внутренней ЭДС обеспечивает разность потенциалов между выводами источника, способствуя непрерывному перемещению электронов в направлении, противоположном действию электростатической силы.

ЭДС источника тока, формула которой приведена ниже, как и разность потенциалов выражается в вольтах:

E = A ст /Δq,

где А ст - работа сторонних сил, Δq - заряд, перемещенный внутри источника.

В разгар учебного года многим ученым деятелям требуется эдс формула для разных расчетов. Эксперименты, связанные с , так же нуждаются в информации об электродвижущей силе. Но для начинающих не так-то просто понять, что же это такое.

Формула нахождения эдс

Первым делом разберемся с определением. Что означает эта аббревиатура?

ЭДС или электродвижущая сила – это параметр характеризующий работу любых сил не электрической природы, работающих в цепях где сила тока как постоянного, так и переменного одинакова по всей длине. В сцепленном токопроводящем контуре ЭДС приравнивается работе данных сил по перемещению единого плюсового (положительного) заряда вдоль всего контура.

Ниже на рисунке представлена эдс формула.

Аст – означает работу сторонних сил в джоулях.

q – это переносимый заряд в кулонах.

Сторонние силы – это силы которые выполняют разделение зарядов в источнике и в итоге образуют на его полюсах разность потенциалов.

Для этой силы единицей измерения является вольт . Обозначается в формулах она буквой « E».

Только в момент отсутствия тока в батареи, электродвижущая си-а будет равна напряжению на полюсах.

ЭДС индукции:

ЭДС индукции в контуре, имеющем N витков:

При движении:

Электродвижущая сила индукции в контуре, крутящемся в магнитном поле со скоростью w :

Таблица значений

Простое объяснение электродвижущей силы

Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня - это батарейка!

Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено H 2 O.

В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.

В результате этого:

  1. Напряжение – это сила с которой вода давит на дно. То есть давление.
  2. Нулевое напряжение - это дно башни.

С батареей все аналогично.

Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).

Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.

Эдс гальванического элемента – формула

Электродвижущую силу батарейки можно вычислить двумя способами:

  • Выполнить расчет с применением уравнения Нернста. Нужно будет рассчитать электродные потенциалы каждого электрода, входящего в ГЭ. Затем вычислить ЭДС по формуле.
  • Посчитать ЭДС формуле Нернста для суммарной ток образующей реакции, протекающей при работе ГЭ.

Таким образом вооружившись данными формулами рассчитать электродвижущую силу батарейки будет проще.

Где используются разные виды ЭДС?

  1. Пьезоэлектрическая применяется при растяжении или сжатии материала. С помощью нее изготавливают кварцевые генераторы энергии и разные датчики.
  2. Химическая используется в и аккумуляторах.
  3. Индукционная появляется в момент пересечения проводником магнитного поля. Ее свойства применяют в трансформаторах, электрических двигателях, генераторах.
  4. Термоэлектрическая образуется в момент нагрева контактов разнотипных металлов. Свое применение она нашла в холодильных установках и термопарах.
  5. Фото электрическая используется для продуцирования фотоэлементов.

Для поддержания электрического тока в проводнике длительное время, необходимо чтобы от конца проводника, имеющего меньший потенциал (учтем, что носители тока предполагаются положительными зарядами) постоянно убирались доставляемые током заряды, при этом к концу с большим потенциалом заряды постоянно подводились. То есть следует обеспечить круговорот зарядов. В этом круговороте заряды должны перемещаться по замкнутому пути. Движение носителей тока при этом реализуется при помощи сил неэлектростатического происхождения. Такие силы именуются сторонними. Получается, что для поддержания тока нужны сторонние силы, которые действуют на всем протяжении цепи или на отдельных участках цепи.

Определение и формула ЭДС

Определение

Скалярная физическая величина, которая равна работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в цепи или на участке цепи. ЭДС обозначается . Математически определение ЭДС запишем как:

где A – работа сторонних сил, q – заряд, над которым производится работа.

Электродвижущая сила источника численно равна разности потенциалов на концах элемента, если он разомкнут, что дает возможность измерить ЭДС по напряжению.

ЭДС, которая действует в замкнутой цепи, может бытьопределена как циркуляция вектора напряжённости сторонних сил:

где - напряженность поля сторонних сил. Если напряженность поля сторонних сил не равна нулю только в части цепи, например, на отрезке 1-2, тогда интегрирование в выражении (2) можно вести только по данному участку. Соответственно, ЭДС, действующая на участке цепи 1-2 определяется как:

Формула (2) дает самое общее определение ЭДС, которое можно использовать для любых случаев.

Закон Ома для произвольного участка цепи

Участок цепи, на котором действуют сторонние силы, называют неоднородным. Для него выполняется равенство:

где U 12 =IR 21 – падение напряжения (или напряжение) на участке цепи 1-2 (I-сила тока); – разность потенциалов концов участка; – электродвижущая сила, которую содержит участок цепи. равна алгебраической сумме ЭДС всех источников, которые находятся на данном участке.

Следует учитывать, что ЭДС может быть положительной и отрицательной. ЭДС называют положительной, если она увеличивает потенциал в направлении тока (ток течет от минуса к плюсу источника).

Единицы измерения

Размерность ЭДС совпадает с размерностью потенциала. Основной единицей измерения ЭДС в системе СИ является: =В

Примеры решения задач

Пример

Задание. Электродвижущая сила элемента равна 10 В. Он создает в цепи силу тока равную 0,4 А. Какова работа, которую совершают сторонние силы за 1 мин?

Решение. В качество основы для решения задачи используем формулу для вычисления ЭДС:

Заряд, который проходит в рассматриваемой цепи за 1 мин. можно найти как:

Выразим из (1.1) работу, используем (1.2) для вычисления заряда, получим:

Переведем время, данной в условиях задачи в секунды ( мин=60 с), проведем вычисления:

Ответ. A=240 Дж

Пример

Задание. Металлический диск, имеющий радиус a, вращается с угловой скоростью , включен в электрическую цепь при помощи скользящих контактов, которые касаются оси диска и его окружности (рис.1). Какой будет ЭДС, которая появится между осью диска и его наружным краем?

Сторонних (непотенциальных) сил в источниках пост. или перем. тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положит. заряда вдоль всего контура. Если через Есгр обозначить напряжённость поля сторонних сил, то эдс? в замкнутом контуре L равна

где dl - элемент длины контура.

Потенц. силы электростатич. поля не могут поддерживать пост. этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - нагреванием проводников. Сторонние силы приводят в заряж. ч-цы внутри генераторов, гальванич. элементов, аккумуляторов и др. источников тока. Происхождение сторонних сил может быть различным: в генераторах - это силы со стороны вихревого электрич. поля, возникающего при изменении магн. поля со временем, или Лоренца , действующая со стороны магн. поля на эл-ны в движущемся проводнике; в гальванич. элементах и аккумуляторах - это хим. силы и т. д. Эдс источника равна электрическому напряжению на его зажимах при разомкнутой цепи. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. ОМА ЗАКОН). Измеряется, как и электрич. , в вольтах.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

(эдс) - феноменологическая характеристика источников тока. Введена Г. Омом (G. Ohm) в 1827 для цепей пост. тока и определена Г. Кирхгофом (G. Kirchhoff) в 1857 как работа "сторонних" сил при переносе единичного электрич. заряда вдоль замкнутого контура. Затем понятие эдс стали трактовать более широко - как меру удельных (на единицу переносимого током заряда) преобразований энергии, осуществляемых в квазистационарных [см. Квазистационарное (квазистатическое) приближение ]электрич. цепях не только "сторонними" источниками (гальванич. батареями, аккумуляторами, генераторами и т. п.), но и "нагрузочными" элементами (электромоторами, аккумуляторами в режиме зарядки, дросселями, трансформаторами и т. п.).

Полное назв. величины - Э. с.- связано с механич. аналогиями процессов в электрич. цепях и применяется редко; более употребительным является сокращение - эдс. В СИ эдс измеряется в вольтах (В); в гауссовой системе (СГСЭ) единица эдс спец. названия не имеет (1 СГСЭ 300 В).

В случае квазилинейного пост. тока в замкнутой (без разветвлений) цепи суммарного притока эл.-магн. энергии, вырабатываемой источниками, полностью расходуется на выделение тепла (см. Джоулевы потери):

где -эдс в проводящем контуре, I -ток, R - сопротивление (знак эдс, как и знак тока, зависит от выбора направления обхода по контуру).

При описании квазистационарных процессов в электрич. цепях в ур-нии энергетич. баланса (*) необходим учёт изменений накопленной магнитной W m и электрической W e энергий:

При изменении магн. поля во времени возникает вихревое электрич. E s , циркуляцию к-рого вдоль проводящего контура принято называть эдс электромагнитной индукции:

Изменения электрич. энергии существенны, как правило, в тех случаях, когда цепь содержит с большой электрич. ёмкостью, напр. конденсаторы. Тогда dW e /dt = DU . I, где DU- разность потенциалов между об-кладками конденсатора.

Допустимы, однако, и др. интерпретации энергетич. превращений в электрич. цепи. Так, напр., если в цепь перем. гармонич. тока включён с индуктивностью L, то взаимные превращения электрич. и магн. энергий в нём могут быть охарактеризованы как эдс эл.-магн. индукции так и падением напряжения на эффективном реактивном сопротивлении Z L (см. Импеданс): В движущихся в магн. поле телах (напр., в якоре униполярного индуктора) даже работа сил сопротивления может давать вклад в эдс.

В разветвлённых цепях квазилинейных токов соотношение между эдс и падениями напряжения на участках цепи, составляющих замкнутый контур, определяется вторым Кирхгофа правилом.

Эдс является интегральной характеристикой замкнутого контура, и в общем случае нельзя строго указать место её "приложения". Однако довольно часто эдс можно считать приближённо локализованной в определённых устройствах или элементах цепи. В таких случаях её принято считать характеристикой устройства (гальванич. батареи, аккумулятора, динамо-машины и т. п.) и определять через разность потенциалов между его разомкнутыми полюсами. По типу преобразований энергии в этих устройствах различают следующие виды эдс: х и м и ч е с к а я эдс в гальванич. батареях, ваннах, аккумуляторах, при коррозионных процессах (гальваноэффекты), ф о т о э л е к т р и ч ес к а я эдс (фотоэдс) при внеш. и внутр. фотоэффекте (фотоэлементы, фотодиоды); э л е к т р о м а г н и т н а я эдс - эдс эл.-магн. индукции (динамо-машины, трансформаторы, дроссели, электромоторы и т. п.); э л е к т р ос т а т и ч е с к а я эдс, возникающая, напр., при механич. трении (электрофорные машины, электризация грозовых облаков и т. п.); п ь е з о э л е к т р и ч е с к а я эдс - при сдавливании или растяжении пьезоэлектриков (пьезодатчики, гидрофоны, стабилизаторы частоты и т. п.); т е р м о и о нн а я эдс, связанная с термоэмиссией заряж. частиц с поверхности разогретых электродов; т е р м о э л е к т р и ч ес к а я эдс ( термоэдс)- на контактах разнородных проводников (Зеебека эффект и Пельтье эффект )либо на участках цепи с неоднородным распределением темп-ры ( Томсона эффект). Термоэдс используют в термопарах, пирометрах, холодильных машинах.

М. А. Миллер, Г. В. Пермитин.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЭЛЕКТРОДВИЖУЩАЯ СИЛА" в других словарях:

    электродвижущая сила - Скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. Примечание — Электродвижущая сила равна линейному интегралу напряженности стороннего поля и индуктированного… … Справочник технического переводчика Современная энциклопедия - скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток...

В материале разберемся в понятии ЭДС индукции в ситуациях ее возникновения. Также рассмотрим индуктивность в качестве ключевого параметра возникновения магнитного потока при появлении электрического поля в проводнике.

Электромагнитная индукция представляет собой генерирование электрического тока магнитными полями, которые изменяются во времени. Благодаря открытиям Фарадея и Ленца закономерности были сформулированы в законы, что ввело симметрию в понимание электромагнитных потоков. Теория Максвелла собрала воедино знания об электрическом токе и магнитных потоках. Благодаря открытия Герца человечество узнало о телекоммуникациях.

Вокруг проводника с электротоком появляется электромагнитное поле, однако параллельно возникает также обратное явление – электромагнитная индукция. Рассмотрим магнитный поток на примере: если рамку из проводника поместить в электрическое поле с индукцией и перемещать ее сверху вниз по магнитным силовым линиям или вправо-влево перпендикулярно им, тогда магнитный поток, проходящий через рамку, будет постоянной величиной.

При вращении рамки вокруг своей оси, тогда через некоторое время магнитный поток изменится на определенную величину. В результате в рамке возникает ЭДС индукции и появится электрический ток, который называется индукционным.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Движение провода в магнитном поле

Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.

Данная зависимость отражена в формуле Е = Blv, где Е - ЭДС индукции; В - значение магнитной индукции; I - длина проводника; v -скорость его перемещения.

Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.

Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.

Вращающаяся катушка

Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).

Согласно формуле, на Ф воздействуют изменения в ситуациях:

  • при изменении магнитного потока меняется вектор направления;
  • изменяется площадь, заключенная в контур;
  • меняется угол.

Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.

На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.

ЭДС самоиндукции

При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.

В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:

Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.

Взаимоиндукция

При расположении двух катушек рядом в них наблюдается ЭДС взаимоиндукции, которая определяется конфигурацией двух схем и их взаимной ориентацией. При возрастании разделения цепей значение взаимоиндуктивности уменьшается, поскольку наблюдается уменьшение общего для двух катушек магнитного потока.

Рассмотрим детально процесс возникновения взаимоиндукции. Есть две катушки, по проводу одной с N1 витков течет ток I1, которым создается магнитный поток и идет через вторую катушку с N2 числом витков.

Значение взаимоиндуктивности второй катушки в отношении первой:

М21 = (N2 x F21)/I1.

Значение магнитного потока:

Ф21 = (М21/N2) x I1.

Индуцированная ЭДС вычисляется по формуле:

Е2 = - N2 x dФ21/dt = - M21x dI1/dt.

В первой катушке значение индуцируемой ЭДС:

Е1 = - M12 x dI2/dt.

Важно отметить, что электродвижущая сила, спровоцированная взаимоиндукцией в одной из катушек, в любом случае прямо пропорциональна изменению электрического тока в другой катушке.

Тогда взаимоиндуктивность считается равной:

М12 = М21 = М.

Вследствие этого, E1 = - M x dI2/dt и E2 = M x dI1/dt. М = К √ (L1 x L2), где К является коэффициентом связи между двумя значениями инжуктивности.

Взаимоиндукция широко используется в трансформаторах, которые дают возможность менять значения переменного электротока. Прибор представляет собой пару катушек, которые намотаны на общий сердечник. Ток в первой катушке формирует изменяющийся магнитный поток в магнитопроводе и ток во второй катушке. При меньшем числе витков в первой катушке, чем во второй, возрастает напряжение, и соответственно при большем количестве витков в первой обмотке напряжение снижается.

Помимо генерирования и трансформации электрической энергии, явление магнитной индукции используется в прочих приборах. К примеру, в магнитных левитационных поездах, движущихся без непосредственного контакта с током в рельсах, а на пару сантиметров выше по причине электромагнитного отталкивания.



mob_info