Определение периода дифракционной решетки. Оптика. Дифракционная решетка. Виды дифракционных решеток

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор, состоящий из системы щелей (прозрачных для света участков), и непрозрачных промежутков, которые сравнимы с длиной волны.

Одномерная дифракционная решетка, состоит из параллельных щелей одинаковой ширины, которые лежат в одной плоскости, разделяемых одинаковыми по ширине непрозрачными для света промежутками. Лучшими считаются отражательные дифракционные решетки. Они состоят из совокупности участков, отражающих свет и участков, которые свет рассеивают. Данные решетки представляют собой отшлифованные металлические пластины, на которые рассеивающие свет штрихи нанесены резцом.

Картиной дифракции на решетке — является результат взаимной интерференции волн, идущих ото всех щелей. С помощью дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, подвергшихся дифракции и которые идут от всех щелей.

Характеристикой дифракционной решетки служит ее период. Периодом дифракционной решетки (d) (ее постоянной) называют величину, равную:

где a — ширина щели; b — ширина непрозрачного участка.

Дифракция на одномерной дифракционной решетке

Допустим, что перпендикулярно к плоскости дифракционной решетки падает световая волна с длиной . Так как щели у решетки расположены на равных расстояниях друг от друга, то разности хода лучей (), идущих от двух соседних щелей, для направления будут одинаковы для всей рассматриваемой дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Кроме главных минимумов, в результате взаимной интерференции лучей света, которые идут от двух щелей, в некоторых направлениях лучи гасят друг друга. В результате возникают дополнительные минимумы интенсивности. Они появляются в тех направлениях, где разность хода лучей составляют нечетное число полуволн. Условием дополнительных минимумов является формула:

где N - количество щелей дифракционной решетки; — целые значения кроме 0, В том случае, если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки является:

Величина синуса не может быть больше единицы, то количество главных максимумов:

Примеры решения задач по теме «Дифракционная решетка»

ПРИМЕР 1

Задание На дифракционную решетку, перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны . На плоский экран картина дифракции проецируется при помощи линзы. Расстояние между двумя максимумами интенсивности первого порядка составляет l. Какова постоянная дифракционной решетки, если линза размещена в непосредственной близости от решетки и расстояние от нее до экрана равно L. Считайте, что


Решение В качестве основы для решения задачи используем формулу, которая связывает постоянную дифракционной решетки, длину волны света и угол отклонения лучей, который соответствует дифракционному максимуму номер m:

По условию задачи Так как угол отклонения лучей можно считать малым (), то примем, что:

Из рис.1 следует, что:

Подставим в формулу (1.1) выражение (1.3) и учтем, что , получим:

Из (1.4) выразим период решетки:

Ответ

ПРИМЕР 2

Задание Используя условия примера 1, и результат решения, найдите количество максимумов, которое даст рассматриваемая решетка.
Решение Для того чтобы определить максимальный угол отклонения лучей света в нашей задаче найдем число максимумов, которое может дать наша дифракционная решетка. Для этого используем формулу:

где положим, что при . Тогда, получим:

ОПРЕДЕЛЕНИЕ

Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.

Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.

Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:

называется периодом (постоянной) дифракционной решетки.

Картина дифракции на одномерной дифракционной решетке

Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Так как величина синуса не может быть больше единицы, то количество главных максимумов:

Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.

Примеры решения задач

ПРИМЕР 1

Задание Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м?
Решение В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:

Максимальным значением является единица, поэтому:

Из (1.2) выразим , получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально?
Решение Сделаем рисунок.

До сих пор мы рассматривали дифракцию сферических волн , изучая дифракционную картину в точке наблюдения, лежащей на конечном расстоянии от препятствия (дифракция Френеля ).

Тип дифракции, при котором дифракционная картина образуется параллельными пучками , называется дифракцией Фраунгофера . Параллельные лучи проявятся, если источник и экран находятся в бесконечности. Практически используется две линзы: в фокусе одной – источник света, а в фокусе другой – экран.

 

Хотя принципиально дифракция Фраунгофера не отличается от дифракции Френеля, но практически именно этот случай важен, так как именно этот тип дифракции используется во многих дифракционных приборах (дифракционная решетка, например). Кроме того, здесь математический расчет проще и позволяет решать количественную задачу до конца (дифракцию Френеля мы рассматривали качественно).

Дифракция света на одной щели

Пусть в непрерывном экране есть щель: ширина щели , длина щели (перпендикулярно плоскости листа) (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.

Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .

Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:

Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

Интенсивность света . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.

Рассмотрим влияние ширины щели.

Т.к. условие минимума имеет вид , отсюда

. (9.4.3)

Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.

При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.

Дифракция света на дифракционной решетке

Одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками (рис. 9.6).

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Обозначим: b ширина щели решетки; а – расстояние между щелями; постоянная дифракционной решетки .

Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.

Рис. 9.6 Рис. 9.7

Пусть луч 1 падает на линзу под углом φ (угол дифракции ). Световая волна, идущая под этим углом от щели, создает в точке максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна m λ:

Условие максимума для дифракционной решетки будет иметь вид:

, (9.4.4)

где m = ± 1, ± 2, ± 3, … .

Максимумы, соответствующие этому условию, называются главными максимумами . Значение величины m , соответствующее тому или иному максимуму называется порядком дифракционного максимума.

В точке F 0 всегда будет наблюдаться нулевой или центральный дифракционный максимум .

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки :

. (9.4.5)

Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочные дифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

При условии ,

волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятся дополнительные минимумы .

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).

Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).

Это свойство дифракционных решеток используется для определения спектрального состава света (дифракционные спектрографы, спектроскопы, спектрометры).

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.

Первые опыты и активные исследования природы света начались еще в далеком XVII веке, когда итальянский ученый Франческо Гримальди впервые открыл такое интересное физическое явление как дифракция света. Что же такое дифракция света? Это отклонение света от прямолинейного распространения в силу определенных препятствий на его пути. Более научное объяснение причинам дифракции света было дано в начале XIX века английским ученым Томасом Юнгом, согласно нему дифракция света возможна благодаря тому, что свет представляет собой волну, идущую от своего источника и естественным образом искривляющуюся при попадании на определенные препятствия. Им же была изобретена первая дифракционная решетка, представляющая собой оптический прибор, работающий на основе дифракции света, то есть специально искривляющий световую волну.

Дифракция и интерференция света

Изучая поведение монохроматического пучка света, Томас Юнг, разделив его пополам, получил дифракционную картину, которая представляла собой последовательное чередование ярких и темных полос на экране. Волновая теория природы света, сформированная Юнгом, прекрасно объясняла это явление. Будучи волной, пучок света при попадании на непрозрачное препятствие искривляется, меняет траекторию своего движения. Так появляется дифракция света, при которой свет может, как целиком огибать препятствия (если длина световой волны больше размеров препятствия) или искривлять свою траекторию (когда размеры препятствий сопоставимы с длиной световой волны). Примером тут может быть попадание света через узкие щели или небольшие отверстия, как на фото ниже.

Луч света в пещере, наглядная иллюстрация дифракции света в природе.

А тут на картинке показано более схематическое изображение дифракции.

Физическое явление дифракции света дополняет еще одно важное свойство световой волны – интерференция света. Суть интерференции света заключается в накладывании одних световых волн на другие. В результате может происходить искривление синусоидальной формы результирующей волны.

Так схематически выглядит интерференция.

При этом, волны, которые накладываются, могут, как усиливать мощь общей световой волны (при совпадении амплитуд), так и наоборот погасить ее.

Как мы писали выше, дифракционная решетка представляет собой простой оптический прибор, который искривляет световую волну.

Вот так она выглядит.

Или еще чуть более маленький экземпляр.

Также дифракционную решетку можно охарактеризовать тремя параметрами:

  • Период d. Он представляет собой расстояние между двумя щелями, через которые проходит свет. Так как длина световой волны обычно находится в диапазоне нескольких десятых микрометра, то величина d обычно имеет 1 микрометр.
  • Постоянная решетка а. Это количество прозрачных щелей на длине 1 мм поверхности решетки. Эта величина обратно пропорциональна периоду дифракционной решетки d. Обычно имеет 300-600 мм -1
  • Общее количество щелей N. Высчитывается путем умножения длины дифракционной решетки на ее постоянную а. Обычно длина решетки имеет несколько сантиметров, а количество щелей при этом составляет 10-20 тысяч.

Виды дифракционных решеток

На самом деле есть целых два вида дифракционных решеток: прозрачная и отражающая.

Прозрачная решетка представляет собой прозрачную тонкую пластину из стекла или прозрачного пластика, на которую нанесены штрихи. Штрихи эти как раз и являются препятствиями для световой волны, сквозь них она не может пройти. Ширина штриха – это и есть, по сути, период дифракционной решетки d. А оставшиеся между штрихами прозрачные зазоры – это щели. Такие решетки наиболее часто применяются при выполнении лабораторных работ.

Отражающая дифракционная решетка – это либо пластиковая и отполированная пластина. Вместо штрихов на нее нанесены бороздки определенной глубины. Период d соответственно это расстояние между этими бороздками. Простым примером отражающей дифракционной решетки может быть оптический CD диск.

Такие решетки часто используют при анализе спектров излучения, так как благодаря их дизайну можно удобно распределить интенсивность максимумов дифракционной картины на пользу максимумов более высокого порядка.

Принцип работы дифракционной решетки

Представим, что на нашу решетку падает свет, имеющий плоский фронт. Это важный момент, так как классическая формула будет верна при условии, что волновой фронт является плоским и параллельным самой пластинке. Штрихи решетки будут вносить в этот световой фронт возмущение и как результат на выходе из решетки создаться ситуация будто бы работает множество когерентных (синхронных) источников излучения. Эти источники и являются причиной дифракции.

От каждого источника (по сути щели между штрихами решетки) будут распространяться световые волны, которые будут когерентными (синхронными) друг другу. Если на некотором расстоянии от решетки поместить экран, то мы сможем увидеть на нем яркие полосы, между которыми будет тень.

Формула дифракционной решетки

Яркие полосы, которые мы увидим на экране можно также назвать максимумами решетки. Если рассматривать условия усиления световых волн, то можно вывести формулу максимума дифракционной решетки, вот она.

sin(θ m) = m*λ/d

Где θ m это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее. λ – длина световой волны, а d – период решетки.

Разрешающая способность дифракционной решетки

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране.

Применение дифракционной решетки

Какое же практическое применение дифракционной решетки, в чем ее конкретная польза? Дифракционная решетка является важным и незаменимым инструментов в спектроскопии, так с ее помощью можно узнать, например, химический состав далекой звезды. Свет, идущий от этой звезды, собирают зеркалами и направляют на решетку. Измеряя значения θ m можно узнать все длины волн спектра, а значит и химические элементы, которые их излучают.

Дифракция света и дифракционная решетка, видео

И в завершение интересное образовательное видео по теме нашей статьи от заслуженного учителя Украины – Павла Виктора, на наш взгляд его видео лекции на Ютубе по физике могут быть очень полезными для всех, кто изучает этот предмет.


При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.



mob_info