Произведение скорости на массу. Импульс силы - это что такое? Закон силы импульса. Изменение импульса системы тел

Произведение массы тела на его скорость называют импульсом или мерой движения тела. Он относится к векторным величинам. Его направление сонаправлено вектору скорости тела.

Вспомним второй закон механики:

Для ускорения верно соотношение:

,
Где v0 и v - скорости тела в начале и конце некоторого временного отрезка Δt.
Перепишем второй закон следующим образом:

Векторные суммы импульсов двух тел до и после удара равны между собой.
Полезной аналогией для понимания закона сохранения импульса является денежная сделка между двумя людьми. Предположим, что у двух людей до сделки была определённая сумма. У Ивана было 1000 рублей и Петр тоже обладал 1000 рублей. Общая сумма в их карманах составляет 2000 рублей. Во время сделки Иван платит Петру 500 рублей, осуществляется передача денег. У Петра в кармане теперь 1500 руб., а у Ивана - 500. Но общая сумма в их карманах не изменилась и также составляет 2000 рублей.
Полученное выражение справедливо для любого количества тел, принадлежащих изолированной системе, и является математической формулировкой закона сохранения импульса.
Суммарный импульс N-ного количества тел, образующих изолированную систему, не меняется с течением времени.
Когда система тел подвергается воздействию нескомпенсированных внешних сил (система незамкнутая), то суммарный импульс тел этой системы изменяется с течением времени. Но справедливым остаётся закон сохранения для суммы проекций импульсов этих тел на любое направление, перпендикулярное направлению результирующей внешней силы.

Движение ракеты

Движение, которое возникает при отделении от тела его части определённой массы с некоторой скоростью, называют реактивным.
Примером реактивного движения может служить движение ракеты, находящейся на значительном удалении от Солнца и планет. В этом случае ракета не испытывает гравитационного воздействия и может считаться изолированной системой.
Ракета состоит из оболочки и топлива. Они и являются взаимодействующими телами изолированной системы. В начальный момент времени скорость ракеты равна нулю. В этот момент равен нулю и импульс системы, и оболочки, и топлива. Если включить двигатель, то топливо ракеты сгорает и превращается в высокотемпературный газ, покидающий двигатель под высоким давлением и с большой скоростью.
Обозначим массу образующегося газа mг. Будем считать, что он вылетает из сопла ракеты моментально со скоростью vг. Массу и скорость оболочки обозначим соответственно mоб и vоб.
Закон сохранения импульса даёт право записать соотношение:

Знак «минус» указывает на то, что скорость оболочки направлена в противоположную сторону от выбрасываемого газа.
Скорость оболочки пропорциональна скорости выброса газа и массе газа. И обратно пропорциональна массе оболочки.
Принцип реактивного движения позволяет рассчитывать перемещение ракет, самолётов и других тел в условиях, когда на них действуют внешние сила тяжести или сила сопротивления атмосферы. Конечно, в этом случае уравнение даёт завышенное значение скорости оболочки vоб. В реальных условиях и газ вытекает из ракеты не мгновенно, что влияет на итоговое значение vоб.
Действующие формулы, описывающее движение тела с реактивным двигателем получены русскими учёными И.В. Мещерским и К.Э. Циолковским.

Задачи с движущимися телами в физике, когда скорость много меньше световой, решаются с помощью законов ньютоновской, или классической механики. В ней одним из важных понятий является импульс. Основные в физике приводятся в данной статье.

Импульс или количество движения?

Прежде чем приводить формулы импульса тела в физике, познакомимся с этим понятием. Впервые величину под названием impeto (импульс) использовал в описании своих трудов Галилей в начале XVII века. Впоследствии Исаак Ньютон для нее употребил другое название - motus (движение). Поскольку фигура Ньютона оказала большее влияние на развитие классической физики, чем личность Галилея, изначально принято говорить не об импульсе тела, а о количестве движения.

Под количеством движения понимают произведение скорости перемещения тела на инерционный коэффициент, то есть на массу. Соответствующая формула имеет вид:

Здесь p¯ - вектор, направление которого совпадает с v¯, но модуль в m раз больше, чем модуль v¯.

Изменение величины p¯

Понятие о количестве движения в настоящее время используют реже, чем об импульсе. И связан этот факт непосредственно с законами ньютоновской механики. Запишем его в форме, которая приводится в школьных учебниках по физике:

Заменим ускорение a¯ на соответствующее выражение с производной скорости, получим:

Перенося dt из знаменателя правой части равенства в числитель левой, получаем:

Мы получили интересный результат: помимо того, что действующая сила F¯ приводит к ускорению тела (см. первую формулу этого пункта), она также изменяет количество его движения. Произведение силы на время, которое стоит в левой части, называется импульсом силы. Он оказывается равным изменению величины p¯. Поэтому последнее выражение называют также формулой импульса в физике.

Заметим, что dp¯ - это тоже но направлена она в отличие от p¯ не как скорость v¯, а как сила F¯.

Ярким примером изменения вектора количества движения (импульса) является ситуация, когда футболист бьет по мячу. До удара мяч двигался к футболисту, после удара - от него.

Закон сохранения импульса

Формулы в физике, которые описывают сохранение величины p¯, могут быть приведены в нескольких вариантах. Прежде чем их записывать, ответим на вопрос о том, когда сохраняется импульс.

Обратимся к выражению из предыдущего пункта:

Оно говорит о том, что если сумма внешних сил, оказывающих воздействие на систему, равна нулю (закрытая система, F¯= 0), тогда dp¯= 0, то есть никакого изменения количества движения не будет происходить:

Это выражение является общим для импульса тела и закона сохранения импульса в физике. Отметим два важных момента, о которых следует знать, чтобы с успехом применять это выражение на практике:

  • Импульс сохраняется вдоль каждой координаты, то есть если до некоторого события значение p x системы составляло 2 кг*м/c, то после этого события оно будет таким же.
  • Импульс сохраняется независимо от характера столкновений твердых тел в системе. Известно два идеальных случая таких столкновений: абсолютно упругий и абсолютно пластичный удары. В первом случае сохраняется также кинетическая энергия, во втором часть ее расходуется на пластическую деформацию тел, однако импульс сохраняется все равно.

Упругое и неупругое взаимодействие двух тел

Частным случаем использования формулы импульса в физике и его сохранения является движение двух тел, которые сталкиваются друг с другом. Рассмотрим два принципиально разных случая, о которых упоминалось в пункте выше.

Если удар будет абсолютно упругим, то есть передача импульса от одного тела к другому осуществляется посредством упругой деформации, тогда формула сохранения p запишется так:

m 1 *v 1 + m 2 *v 2 = m 1 *u 1 + m 2 *u 2

Здесь важно помнить, что знак скорости должен подставляться с учетом ее направления вдоль рассматриваемой оси (противоположные скорости имеют разные знаки). Эта формула показывает, что при условии известного начального состояния системы (величины m 1 , v 1 , m 2 , v 2) в конечном состоянии (после столкновения) имеется две неизвестных (u 1 , u 2). Найти их можно, если воспользоваться соответствующим законом сохранения кинетической энергии:

m 1 *v 1 2 + m 2 *v 2 2 = m 1 *u 1 2 + m 2 *u 2 2

Если удар абсолютно неупругий или пластический, то после столкновения два тела начинают двигаться как единое целое. В этом случае имеет место выражение:

m 1 *v 1 + m 2 *v 2 = (m 1 + m 2)*u

Как видно, речь идет всего об одной неизвестной (u), поэтому для ее определения достаточно этого одного равенства.

Импульс тела во время движения по окружности

Все, что было сказано выше об импульсе, относится к линейным перемещениям тел. Как быть в случае вращения объектов вокруг оси? Для этого в физике введено другое понятие, которое аналогично линейному импульсу. Оно называется моментом импульса. Формула в физике для него принимает следующий вид:

Здесь r¯ - вектор, равный расстоянию от оси вращения до частицы с импульсом p¯, совершающей круговые движения вокруг этой оси. Величина L¯ - это тоже вектор, но рассчитать его несколько сложнее, чем p¯, поскольку речь идет о векторном произведении.

Закон сохранения L¯

Формула для L¯, которая приведена выше, является определением этой величины. На практике же предпочитают использовать несколько иное выражение. Не будем вдаваться в подробности его получения (это несложно, и каждый может проделать это самостоятельно), а приведем его сразу:

Здесь I - это момент инерции (для материальной точки он равен m*r 2), который описывает инерционные свойства вращающегося объекта, ω¯ - скорость угловая. Как можно заметить, это уравнение аналогично по форме записи такового для линейного импульса p¯.

Если на вращающую систему не действуют никакие внешние силы (в действительности момент сил), то произведение I на ω¯ будет сохраняться независимо от процессов, происходящих внутри системы. То есть закон сохранения для L¯ имеет вид:

Примером его проявления является выступление спортсменов в фигурном катании, когда они совершают вращения на льду.

Основные динамические величины: сила, масса, импульс тела, момент силы, момент импульса.

Сила – это век­тор­ная ве­ли­чи­на, яв­ля­ю­ща­я­ся мерой дей­ствия на дан­ное тело дру­гих тел или полей.

Сила ха­рак­те­ри­зу­ет­ся:

· Мо­ду­лем

· На­прав­ле­ни­ем

· Точ­кой при­ло­же­ния

В си­сте­ме СИ сила из­ме­ря­ет­ся в нью­то­нах.

Для того чтобы по­нять, что такое сила в один нью­тон, нам нужно вспом­нить, что сила, при­ло­жен­ная к телу, из­ме­ня­ет его ско­рость. Кроме того, вспом­ним о инерт­но­сти тел, ко­то­рая, как мы пом­ним, свя­за­на с их мас­сой. Итак,

Один нью­тон – это такая сила, ко­то­рая ме­ня­ет ско­рость тела мас­сой в 1 кг на 1 м/с за каж­дую се­кун­ду.

При­ме­ра­ми сил могут слу­жить:

· Сила тя­же­сти – сила, дей­ству­ю­щая на тело в ре­зуль­та­те гра­ви­та­ци­он­но­го вза­и­мо­дей­ствия.

· Сила упру­го­сти – сила, с ко­то­рой тело со­про­тив­ля­ет­ся внеш­ней на­груз­ке. Ее при­чи­ной яв­ля­ет­ся элек­тро­маг­нит­ное вза­и­мо­дей­ствие мо­ле­кул тела.

· Сила Ар­хи­ме­да – сила, свя­зан­ная с тем, что тело вы­тес­ня­ет некий объем жид­ко­сти или газа.

· Сила ре­ак­ции опоры – сила, с ко­то­рой опора дей­ству­ет на тело, на­хо­дя­ще­е­ся на ней.

· Сила тре­ния – сила со­про­тив­ле­ния от­но­си­тель­но­му пе­ре­ме­ще­нию кон­так­ти­ру­ю­щих по­верх­но­стей тел.

· Сила по­верх­ност­но­го на­тя­же­ния – сила, воз­ни­ка­ю­щая на гра­ни­це раз­де­ла двух сред.

· Вес тела – сила, с ко­то­рой тело дей­ству­ет на го­ри­зон­таль­ную опору или вер­ти­каль­ный под­вес.

И дру­гие силы.

Сила из­ме­ря­ет­ся с по­мо­щью спе­ци­аль­но­го при­бо­ра. Этот при­бор на­зы­ва­ет­ся ди­на­мо­мет­ром (рис. 1). Ди­на­мо­метр со­сто­ит из пру­жи­ны 1, рас­тя­же­ние ко­то­рой и по­ка­зы­ва­ет нам силу, стрел­ки 2, сколь­зя­щей по шкале 3, план­ки-огра­ни­чи­те­ля 4, ко­то­рая не дает рас­тя­нуть­ся пру­жине слиш­ком силь­но, и крюч­ка 5, к ко­то­ро­му под­ве­ши­ва­ет­ся груз.

Рис. 1. Ди­на­мо­метр (Ис­точ­ник)

На тело могут дей­ство­вать мно­гие силы. Для того чтобы пра­виль­но опи­сать дви­же­ние тела, удоб­но поль­зо­вать­ся по­ня­ти­ем рав­но­дей­ству­ю­щей сил.

Рав­но­дей­ству­ю­щая сил – это сила, дей­ствие ко­то­рой за­ме­ня­ет дей­ствие всех сил, при­ло­жен­ных к телу (Рис. 2).

Зная пра­ви­ла ра­бо­ты с век­тор­ны­ми ве­ли­чи­на­ми, легко до­га­дать­ся, что рав­но­дей­ству­ю­щая всех сил, при­ло­жен­ных к телу – это век­тор­ная сумма этих сил.

Рис. 2. Рав­но­дей­ству­ю­щая двух сил, дей­ству­ю­щих на тело

Кроме того, по­сколь­ку мы с вами рас­смат­ри­ва­ем дви­же­ние тела в ка­кой-ли­бо си­сте­ме ко­ор­ди­нат, нам обыч­но вы­год­но рас­смат­ри­вать не саму силу, а ее про­ек­цию на ось. Про­ек­ция силы на ось может быть от­ри­ца­тель­ной или по­ло­жи­тель­ной, по­то­му что про­ек­ция – это ве­ли­чи­на ска­ляр­ная. Так, на ри­сун­ке 3 изоб­ра­же­ны про­ек­ции сил, про­ек­ция силы – от­ри­ца­тель­на, а про­ек­ция силы – по­ло­жи­тель­на.

Рис. 3. Про­ек­ции сил на ось

Итак, из этого урока мы с вами углу­би­ли свое по­ни­ма­ние по­ня­тия силы. Мы вспом­ни­ли еди­ни­цы из­ме­ре­ния силы и при­бор, с по­мо­щью ко­то­ро­го из­ме­ря­ет­ся сила. Кроме того, мы рас­смот­ре­ли, какие силы су­ще­ству­ют в при­ро­де. На­ко­нец, мы узна­ли, как можно дей­ство­вать в слу­чае, если на тело дей­ству­ет несколь­ко сил.

Масса , физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Соответственно различают Массу инертную и Массу гравитационную (тяжелую, тяготеющую).

Понятие Масса было введено в механику И. Ньютоном. В классической механике Ньютона Масса входит в определение импульса (количества движения) тела: импульс р пропорционален скорости движения тела v , p = mv (1). Коэффициент пропорциональности - постоянная для данного тела величина m - и есть Масса тела. Эквивалентное определение Массы получается из уравнения движения классической механики f = ma (2). Здесь Масса - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) Масса называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше Масса тела, тем меньшее ускорение оно приобретает, т. е. тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения Масса этих тел: m 1: m 2: m 3 ... = а 1: а 2: а 3 ... ; если одну из Масс принять за единицу измерения, можно найти Массу остальных тел.

В теории гравитации Ньютона Масса выступает в другой форме - как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное Массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна Массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона:

(3)

где r - расстояние между телами, G - универсальная гравитационная постоянная, a m 1 и m 2 - Массы притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4).

Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли, а r » R - радиусу Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что Масса, создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная Масса и гравитационная Масса пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г.Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А.Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности. Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной Масс была произведена Л.Этвешем, который нашел, что Массы совпадают с ошибкой ~ 10 -8 . В 1959-64 годах американские физики Р.Дикке, Р.Кротков и П.Ролл уменьшили ошибку до 10 -11 , а в 1971 году советские физики В.Б.Брагинский и В.И.Панов - до 10 -12 .

Принцип эквивалентности позволяет наиболее естественно определять Массу тела взвешиванием.

Первоначально Масса рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчеркивает аддитивность Массы - Масса тела равна сумме Массы его частей. Масса однородного тела пропорциональна его объему, поэтому можно ввести понятие плотности - Массы единицы объема тела.

В классической физике считалось, что Масса тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения Массы (вещества), открытый М.В.Ломоносовым и А.Л.Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма Масс исходных компонентов равна сумме Масс конечных компонентов.

Понятие Масса приобрело более глубокий смысл в механике специальной теории относительности А. Эйнштейна, рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ~ 3 10 10 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы дается соотношением:

(5)

При малых скоростях (v << c ) это соотношение переходит в Ньютоново соотношение р = mv . Поэтому величину m 0 называют массой покоя, а Массу движущейся частицы m определяют как зависящий от скорости коэффициент пропорциональности между p и v :

(6)

Имея в виду, в частности, эту формулу, говорят, что Масса частицы (тела) растет с увеличением ее скорости. Такое релятивистское возрастание Массы частицы по мере повышения ее скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. Масса покоя m 0 (Масса в системе отсчета, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определенными значениями m 0 , присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение Массы из уравнения движения (2) не эквивалентно определению Массы как коэффициента пропорциональности между импульсом и скоростью частицы, так как ускорение перестает быть параллельным вызвавшей его силе и Масса получается зависящей от направления скорости частицы.

Согласно теории относительности, Масса частицы m связана с ее энергией Е соотношением:

(7)

Масса покоя определяет внутреннюю энергию частицы - так называемую энергию покоя Е 0 = m 0 с 2 . Таким образом, с Массой всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения Массы и закона сохранения энергии - они слиты в единый закон сохранения полной (т. е. включающей энергию покоя частиц) энергии. Приближенное разделение на закон сохранения энергии и закон сохранения Массы возможно лишь в классической физике, когда скорости частиц малы (v << c ) и не происходят процессы превращения частиц.

В релятивистской механике Масса не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ , который соответствует Массе Dm = DE/с 2 . Поэтому Масса составной частицы меньше суммы Масс образующих его частиц на величину DE/с 2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, Масса дейтрона (d ) меньше суммы Масс протона (p ) и нейтрона (n ); дефект Масс Dm связан с энергией Е g гамма-кванта (g ), рождающегося при образовании дейтрона: р + n -> d + g , E g = Dmc 2 . Дефект Массы, возникающий при образовании составной частицы, отражает органическую связь Массы и энергии.

Единицей Массы в СГС системе единиц служит грамм , а вМеждународной системе единиц СИ - килограмм . Масса атомов и молекул обычно измеряется в атомных единицах массы. Масса элементарных частиц принято выражать либо в единицах Массы электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, Масса электрона составляет 0,511 Мэв, Масса протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа Массы - одна из важнейших нерешенных задач современной физики. Принято считать, что Масса элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория Массы еще не создана. Не существует также теории, объясняющей, почему Масса элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике Масса тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R =< R гр . Звезды таких размеров будут невидимы; поэтому их назвали "черными дырами". Такие небесные тела должны играть важную роль во Вселенной.

Импульс силы. Импульс тела

По­ня­тие им­пуль­са было вве­де­но еще в пер­вой по­ло­вине XVII века Рене Де­кар­том, а затем уточ­не­но Иса­а­ком Нью­то­ном. Со­глас­но Нью­то­ну, ко­то­рый на­зы­вал им­пульс ко­ли­че­ством дви­же­ния, – это есть мера та­ко­во­го, про­пор­ци­о­наль­ная ско­ро­сти тела и его массе. Со­вре­мен­ное опре­де­ле­ние: им­пульс тела – это фи­зи­че­ская ве­ли­чи­на, рав­ная про­из­ве­де­нию массы тела на его ско­рость:

Пре­жде всего, из при­ве­ден­ной фор­му­лы видно, что им­пульс – ве­ли­чи­на век­тор­ная и его на­прав­ле­ние сов­па­да­ет с на­прав­ле­ни­ем ско­ро­сти тела, еди­ни­цей из­ме­ре­ния им­пуль­са слу­жит:

= [ кг· м/с]

Рас­смот­рим, каким же об­ра­зом эта фи­зи­че­ская ве­ли­чи­на свя­за­на с за­ко­на­ми дви­же­ния. За­пи­шем вто­рой закон Нью­то­на, учи­ты­вая, что уско­ре­ние есть из­ме­не­ние ско­ро­сти с те­че­ни­ем вре­ме­ни:

На­ли­цо связь между дей­ству­ю­щей на тело силой, точ­нее, рав­но­дей­ству­ю­щей сил и из­ме­не­ни­ем его им­пуль­са. Ве­ли­чи­на про­из­ве­де­ния силы на про­ме­жу­ток вре­ме­ни носит на­зва­ние им­пуль­са силы. Из при­ве­ден­ной фор­му­лы видно, что из­ме­не­ние им­пуль­са тела равно им­пуль­су силы.

Какие эф­фек­ты можно опи­сать с по­мо­щью дан­но­го урав­не­ния (рис. 1)?

Рис. 1. Связь им­пуль­са силы с им­пуль­сом тела (Ис­точ­ник)

Стре­ла, вы­пус­ка­е­мая из лука. Чем доль­ше про­дол­жа­ет­ся кон­такт те­ти­вы со стре­лой (∆t), тем боль­ше из­ме­не­ние им­пуль­са стре­лы (∆ ), а сле­до­ва­тель­но, тем выше ее ко­неч­ная ско­рость.

Два стал­ки­ва­ю­щих­ся ша­ри­ка. Пока ша­ри­ки на­хо­дят­ся в кон­так­те, они дей­ству­ют друг на друга с рав­ны­ми по мо­ду­лю си­ла­ми, как учит нас тре­тий закон Нью­то­на. Зна­чит, из­ме­не­ния их им­пуль­сов также долж­ны быть равны по мо­ду­лю, даже если массы ша­ри­ков не равны.

Про­ана­ли­зи­ро­вав фор­му­лы, можно сде­лать два важ­ных вы­во­да:

1. Оди­на­ко­вые силы, дей­ству­ю­щие в те­че­ние оди­на­ко­во­го про­ме­жут­ка вре­ме­ни, вы­зы­ва­ют оди­на­ко­вые из­ме­не­ния им­пуль­са у раз­лич­ных тел, неза­ви­си­мо от массы по­след­них.

2. Од­но­го и того же из­ме­не­ния им­пуль­са тела можно до­бить­ся, либо дей­ствуя неболь­шой силой в те­че­ние дли­тель­но­го про­ме­жут­ка вре­ме­ни, либо дей­ствуя крат­ко­вре­мен­но боль­шой силой на то же самое тело.

Со­глас­но вто­ро­му за­ко­ну Нью­то­на, можем за­пи­сать:

∆t = ∆ = ∆ / ∆t

От­но­ше­ние из­ме­не­ния им­пуль­са тела к про­ме­жут­ку вре­ме­ни, в те­че­ние ко­то­ро­го это из­ме­не­ние про­изо­шло, равно сумме сил, дей­ству­ю­щих на тело.

Про­ана­ли­зи­ро­вав это урав­не­ние, мы видим, что вто­рой закон Нью­то­на поз­во­ля­ет рас­ши­рить класс ре­ша­е­мых задач и вклю­чить за­да­чи, в ко­то­рых масса тел из­ме­ня­ет­ся с те­че­ни­ем вре­ме­ни.

Если же по­пы­тать­ся ре­шить за­да­чи с пе­ре­мен­ной мас­сой тел при по­мо­щи обыч­ной фор­му­ли­ров­ки вто­ро­го за­ко­на Нью­то­на:

то по­пыт­ка та­ко­го ре­ше­ния при­ве­ла бы к ошиб­ке.

При­ме­ром тому могут слу­жить уже упо­ми­на­е­мые ре­ак­тив­ный са­мо­лет или кос­ми­че­ская ра­ке­та, ко­то­рые при дви­же­нии сжи­га­ют топ­ли­во, и про­дук­ты этого сжи­га­е­мо­го вы­бра­сы­ва­ют в окру­жа­ю­щее про­стран­ство. Есте­ствен­но, масса са­мо­ле­та или ра­ке­ты умень­ша­ет­ся по мере рас­хо­да топ­ли­ва.

МОМЕНТ СИЛЫ - величина, характеризующая вращательный эффект силы; имеет размерность произведения длины на силу. Различают момент силы относительно центра (точки) и относительно оси.

M. с. относительно центра О наз. векторная величина M 0 , равная векторному произведению радиуса-вектора r , проведённого из O в точку приложения силы F , на силуM 0 = [rF ] или в др. обозначениях M 0 = r F (рис.). Численно M. с. равен произведению модуля силы на плечо h , т. е. на длину перпендикуляра, опущенного из О на линию действия силы, или удвоенной площади

треугольника, построенного на центре O и силе:

Направлен вектор M 0 перпендикулярно плоскости, проходящей через O и F . Сторона, куда направляется M 0 , выбирается условно (M 0 - аксиальный вектор). При правой системе координат вектор M 0 направляют в ту сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки.

M. с. относительно оси z наз. скалярная величина M z , равная проекции на ось z вектора M. с. относительно любого центра О , взятого на этой оси; величину M z можно ещё определять как проекцию на плоскость ху , перпендикулярную оси z, площади треугольника OAB или как момент проекции F xy силы F на плоскость ху , взятый относительно точки пересечения оси z с этой плоскостью. T. о.,

В двух последних выражениях M. с. считается положительным, когда поворот силы F xy виден с положит. конца оси z против хода часовой стрелки (в правой системе координат). M. с. относительно координатных осей Oxyz могут также вычисляться по аналитич. ф-лам:

где F x , F y , F z - проекции силы F на координатные оси, х, у, z - координаты точки А приложения силы. Величины M x , M y , M z равны проекциям вектора M 0 на координатные оси.

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Любые задачи на движущиеся тела в классической механике требуют знания концепции импульса. В данной статье рассматривается эта концепция, дается ответ на вопрос, куда направлен вектор импульса тела, а также приводится пример решения задачи.

Количество движения

Чтобы выяснить, куда направлен вектор импульса тела, следует, в первую очередь, понять его физический смысл. Впервые термин был объяснен Исааком Ньютоном, однако важно отметить, что итальянский ученый Галилео Галилей в своих работах уже использовал похожее понятие. Для характеристики движущегося объекта он ввел величину, которая называлась стремление, натиск или собственно импульс (impeto на итальянском). Заслуга же Исаака Ньютона заключается в том, что он смог связать эту характеристику с действующими на тело силами.

Итак, изначально и более правильно то, что большинство понимают под импульсом тела, называть количеством движения. Действительно, математическая формула для рассматриваемой величины пишется в виде:

Здесь m - масса тела, v¯ - его скорость. Как видно из формулы, ни о каком импульсе речь не идет, имеется лишь скорость тела и его масса, то есть количество движения.

Важно отметить, что эта формула не следует из математических доказательств или выражений. Ее возникновение в физике имеет исключительно интуитивный, бытовой характер. Так, любой человек хорошо представляет, что если муха и грузовик будут двигаться с одинаковой скоростью, то грузовик остановить гораздо тяжелее, поскольку он обладает намного большим количеством движения, чем насекомое.

Откуда возникло понятие вектор импульса тела, рассмотрено далее.

Импульс силы - причина изменения количества движения

Интуитивно введенную характеристику Ньютон смог связать со вторым законом, носящим его фамилию.

Импульс силы - это известная физическая величина, которая равна произведению приложенной внешней силы к некоторому телу на время ее действия. Воспользовавшись известным законом Ньютона и полагая, что сила от времени не зависит, можно прийти к выражению:

F¯ * Δt = m * a¯ * Δt.

Здесь Δt - время действия силы F, a - это линейное ускорение, сообщаемое силой F телу массой m. Как известно, умножение ускорения тела на промежуток времени, который оно действует, дает приращение скорости. Этот факт позволяет переписать формулу выше в несколько ином виде:

F¯ * Δt = m * Δv¯, где Δv¯= a¯ * Δt.

Правая часть равенства представляет собой изменение количества движения (см. выражение в предыдущем пункте). Тогда получится:

F¯ * Δt = Δp¯, где Δp¯ = m * Δv¯.

Таким образом, пользуясь законом Ньютона и понятием об импульсе силы, можно прийти к важному выводу: воздействие внешней силы на объект в течение некоторого времени приводит к изменению его количества движения.

Теперь становится понятным, почему количество движения принято называть импульсом, ведь его изменение совпадает с импульсом силы (слово "сила", как правило, опускают).

Векторная величина p¯

Над некоторыми величинами (F¯, v¯, a¯, p¯) стоит черта. Это означает, что речь идет о векторной характеристике. То есть количество движения так же, как и скорость, сила и ускорение, помимо абсолютной величины (модуля), описывается еще направлением.

Так как каждый вектор можно разложить на отдельные компоненты, то, пользуясь декартовой прямоугольной системой координат, можно записать следующие равенства:

1) p¯ = m * v¯;

2) p x = m * v x ; p y = m * v y ; p z = m * v z ;

3) |p¯| = √(p x 2 + p y 2 + p z 2).

Здесь 1-е выражение - это векторная форма представления количества движения, 2-й набор формул позволяет рассчитать каждую из компонентов импульса p¯, зная соответствующие компоненты скорости (индексы x, y, z говорят о проекции вектора на соответствующую ось координат). Наконец, 3-я формула позволяет вычислить длину вектора импульса (абсолютное значение величины) через его компоненты.

Куда направлен вектор импульса тела?

Рассмотрев понятие количества движения p¯ и его основные свойства, можно легко ответить на поставленный вопрос. Вектор импульса тела направлен так же, как и вектор линейной скорости. Действительно, из математики известно, что умножение вектора a¯ на число k приводит к образованию нового вектора b¯, обладающего следующими свойствами:

  • его длина равна произведению числа на модуль исходного вектора, то есть |b¯| = k * |a¯|;
  • он направлен так же, как исходный вектор, если k > 0, в противном случае он будет направлен противоположно a¯.

В данном случае роль вектора a¯ играет скорость v¯, импульс p¯ - это новый вектор b¯, а число k - это масса тела m. Поскольку последняя всегда является положительной (m>0), то, отвечая на вопрос: чему сонаправлен вектор импульса тела p¯, следует сказать, что он сонаправлен скорости v¯.

Вектор изменения количества движения

Интересно рассмотреть еще один похожий вопрос: куда направлен вектор изменения импульса тела, то есть Δp¯. Для ответа на него стоит использовать полученную выше формулу:

F¯ * Δt = m * Δv¯ = Δp¯.

Исходя из рассуждений в предыдущем пункте, можно сказать, что направление изменения количества движения Δp¯ совпадает с направлением вектора силы F¯ (Δt > 0) или с направлением вектора изменения скорости Δv¯ (m > 0).

Здесь важно не путать, что речь идет именно об изменении величин. В общем случае векторы p¯ и Δp¯ не совпадают, поскольку они никак не связаны друг с другом. Например, если сила F¯ будет действовать против скорости v¯ перемещения объекта, тогда p¯ и Δp¯ будут направлены в противоположные стороны.

Где важно учитывать векторный характер количества движения?

Рассмотренные выше вопросы: куда направлен вектор импульса тела и вектор его изменения, обусловлены не простым любопытством. Дело в том, что закон сохранения импульса p¯ выполняется для каждой его компоненты. То есть в наиболее полной форме он записывается так:

p x = m * v x ; p y = m * v y ; p z = m * v z .

Каждая компонента вектора p¯ сохраняет свое значение в системе взаимодействующих объектов, на которые не действуют внешние силы (Δp¯ = 0).

Как пользоваться этим законом и векторными представлениями величины p¯, чтобы решать задачи на взаимодействие (соударение) тел?

Задача с двумя шарами

На рисунке ниже изображены два шара разной массы, которые летят под разными углами к горизонтальной линии. Пусть массы шаров равны m 1 = 1 кг, m 2 = 0,5 кг, их скорости v 1 = 2 м/с, v 2 = 3 м/с. Необходимо определить направление импульса после удара шаров, полагая последний абсолютно неупругим.

Начиная решать задачу, следует записать закон неизменности количества движения в векторной форме, то есть:

p 1 ¯ + p 2 ¯ = const.

Поскольку каждая компонента импульса должна сохраняться, то нужно переписать это выражение, учитывая также, что после столкновения два шара начнут двигаться, как единый объект (абсолютно неупругий удар):

m 1 * v 1x + m 2 * v 2x = (m 1 + m 2) * u x ;

M 1 * v 1y + m 2 * v 2y = (m 1 + m 2) * u y .

Знак минус для проекции импульса первого тела на ось y появился вследствие ее направленности против выбранного вектора оси ординат (см. рис.).

Теперь нужно выразить неизвестные компоненты скорости u, а затем подставить известные значения в выражения (соответствующие проекции скоростей определяются умножением модулей векторов v 1 ¯ и v 2 ¯ на тригонометрические функции):

u x = (m 1 * v 1x + m 2 * v 2x) / (m 1 + m 2), v 1x = v 1 * cos(45 o); v 2x = v 2 * cos(30 o);

u x = (1 * 2 * 0,7071 + 0,5 * 3 * 0,866) / (1 + 0,5) = 1,8088 м/с;

u y = (-m 1 * v 1y + m 2 * v 2y) / (m 1 + m 2), v 1y = v 1 * sin(45 o); v 2y = v 2 * sin(30 o);

u y = (-1 * 2 * 0,7071 + 0,5 * 3 * 0,5) / (1 + 0,5) = -0,4428 м/с.

Это две компоненты скорости тела после удара и "слипания" шаров. Поскольку направление скорости совпадает с вектором импульса p¯, то ответить на вопрос задачи можно, если определить u¯. Угол его относительно горизонтальной оси будет равен арктангенсу отношения компонент u y и u x:

α = arctg(-0,4428 / 1,8088) = -13,756 o .

Знак минус указывает, что импульс (скорость) после удара будет направлен вниз от оси x.



mob_info