Гидроэлектростанции. Особенности;Особенности; Принцип работы;Принцип работы; Типы ГЭС;Типы ГЭС; Мощность ГЭС:Мощность ГЭС: Крупнейшие ГЭС мира;Крупнейшие. Принцип работы гидроэлектростанции. Схема, описание Принцип действия гидроэлектростанции

На первый взгляд, гидроэлектростанция штука довольно простая - льётся вода, крутится генератор, вырабатывается электричество. На самом деле современная ГЭС - система с очень сложным оборудованием и тысячами датчиков, управляемая компьютерами.

Сегодня я расскажу о том, что мало кто из обычных людей знает о ГЭС.


Сейчас я нахожусь на стройплощадке Усть-Среднеканской ГЭС, которая расположена в 400 километрах от Магадана. Подробно о ГЭС и строительстве я ещё расскажу, а сегодня несколько любопытных фактов.

1. ГЭС - возможно единственный крупный инженерный объект, который начинает эксплуатироваться задолго до окончания строительства. На Усть-Среднеканской ГЭС ещё не до конца возведена плотина, не до конца построен машинный зал, а первые два гидроагрегата из четырёх уже вырабатывают электричество.

2. Пока ГЭС строится, в её гидроагрегатах работают временные рабочие колёса, рассчитанные на малый напор воды. Когда плотина будет достроена, напор воды повысится и временные колёса заменят постоянными для высокого напора с другой формой лопастей.

3. Несмотря на то, что строительство ГЭС очень дорогое удовольствие, многие ГЭС окупаются ещё до того, как их достраивают до конца. Кстати, Усть-Среднеканская ГЭС продаёт электричество по 1.10 руб за кВтч.

4. Перед тем, как попасть на турбину ГЭС, вода закручивается с помощью огромной стальной улитки - спиральной камеры. Сейчас на Усть-Среднеканской ГЭС как раз заканчивается монтаж спиральной камеры третьего энергоагрегата и мне удалось увидеть и сфотографировать её. Когда энергоагрегат будет достроен, гигантская улитка окажется в толще бетона.

Чтобы осознать размеры конструкции, обратите внимание на рабочих, занимающихся монтажом спиральной камеры.

5. Рабочее колесо гидроагрегата всегда крутится с одинаковой скоростью, обеспечивая стабильную частоту 50 герц. Для меня всегда было загадкой, как поддерживается стабильная скорость вращения. Оказалось, просто с помощью изменения потока воды. Лопатки, управляемые компьютером, постоянно находятся в движении, уменьшая и увеличивая поток воды. Задача системы добиться точной скорости вращения независимо от усилия, с которым крутится вал генератора (а оно зависит от вырабатываемой мощности).

6. Напряжение, выдаваемое генератором, регулируется с помощью изменения напряжения возбуждения. Это постоянное напряжение, которое подаётся на электромагнит ротора. При этом напряжение, которое генерируется обмоткой статора зависит от силы магнитного поля. На фото у меня над головой вращается многотонный ротор.

7. Генератор ГЭС вырабатывает напряжение 15.75 кВ. На Усть-Среднеканской ГЭС установлены генераторы, имеющие номинальную мощность 142.5 МВт (142500000 Вт) и ток в проводах, отводящих выработанное электричество от генератора, может достигать 6150 А. Поэтому эти провода, а точнее шины, имеют огромное сечение и заключены вот в такие трубы.

Любая коммутация при таких токах превращается в большую проблему. Вот так выглядит простой выключатель. Конечно, на токе в шесть тысяч ампер и напряжении пятнадцать тысяч вольт он становится совсем непростым.

8. Повышающие трансформаторы обычно стоят на улице за машинным залом ГЭС (для передачи потребителям напряжение, полученное с генераторов, повышается чаще всего до 220 кВ).

9. По проводам линий электропередач передаётся не только электроэнергия на частоте 50 Гц, но и информационные сигналы на высокой частоте. С помощью них, например, можно с высокой точностью определить место аварии на ЛЭП. На электростанциях и подстанциях ставятся специальные фильтры высокочастотного сигнала. Наверняка, вы такие штуки видели, но вряд ли знали, для чего они.

10. Вся коммутация на высоких напряжениях происходит в среде элегаза (фторид серы, имеющий очень низкую электропроводность), поэтому провода выглядят, как трубы и электрика больше напоминает сантехнику. :)

p.s. Спасибо сотрудникам Усть-Среднеканской ГЭС Илье Горбунову и Вячеславу Сладкевичу (он на фото) за подробные ответы на мои многочисленные вопросы, а так же компании Русгидро за возможность своими глазами посмотреть на строительство и работу такого грандиозного сооружения.

2016, Алексей Надёжин

Основная тема моего блога - техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья

ВВЕДЕНИЕ

На сегодняшний день существуют различные виды получения электроэнергии, они различаются использованием разных видов сырья. Существуют возобновляемые источники энергии и не возобновляемые. В этом реферате будет разобран один вид получения электроэнергии на гидроэлектростанции, которая использует в качестве сырья возобновляемый источник энергии.

ОБЩЕЕ ПОНЯТИЕ О ГЭС

Гидроэлектростанция (ГЭС) электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Недостатки ГЭС:

затопление пахотных земель;

строительство ведется там, где есть большие запасы энергии воды;

на горных реках опасны из-за высокой сейсмичности районов;

сокращенные и нерегулируемые попуски воды из водохранилищ по 1015 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

ПРИНЦИП РАБОТЫ ГЭС

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию (рисунок 1).

Рисунок 1 Схема платины ГЭС

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию потока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные вырабатывают от 25 МВт и выше;

средние до 25 МВт;

малые гидроэлектростанции до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

высоконапорные более 60 м;

средненапорные от 25 м;

низконапорные от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных турбин ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотно-лопастные и радиально-осевые турбины, на низконапорных поворотно-лопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

русловые и плотинные ГЭС;

приплотинные ГЭС;

деривационные гидроэлектростанции;

Гидроаккумулирующие электростанции.

Русловые и плотинные ГЭС наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое

Приплотинные ГЭС строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

Деривационные гидроэлектростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище. Такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

ГАЭС (гидроаккумулирующие электростанции) способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

гидроэлектростанция энергия плотина русловый

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию . Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках , сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Красноярская ГЭС

  • ГЭС (Плотина Гувера в Неваде)

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор . Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод , посредством которого вода , находящаяся под давлением , подводится ниже уровня дамбы или к водозаборному узлу ГЭС .

Необходимый напор воды образуется посредством строительства плотины , и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 25 МВТ и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Как же такое устройство обеспечивает преобразование энергии воды в электроэнергию? В камере происходит взрыв определенного количества вещества. Взрывная волна жидкости проходит по стволу и попадает в цилиндр. Вследствие этого происходит вращение лопастей турбины, что, в свою очередь, является причиной работы гидрогенератора.

По мнению разработчиков проекта, самым важным условием для обеспечения эффективности изобретения является правильный расчёт веса взрывной волны, необходимого для производства волны, а не всплеска. Кроме того, должна быть точно рассчитана периодичность взрывов, что позволит избежать перерывов в действии устройства и не снижать скорость вращения лопастей. На стадии разработки находятся и другие варианты подобных установок.

Гидроаккумулирующие электростанции

Знак у Киевской ГАЭС

В период малых нагрузок гидроагрегаты станции заняты перекачкой воды из низового водоёма в верховой. Во время повышенной нагрузки происходит использование запасённой воды для выработки пиковой энергии. Обратимые гидроагрегаты обеспечивают работу турбинных и насосных режимов и представляют собой соединение синхронной электрической машины и гидравлической насос-турбины.

Энергия, которая тратится на перекачку, вырабатывается ТЭС во время пониженной загрузки, когда её стоимость не слишком высока. То есть, дешёвая ночная электроэнергия преобразовывается в дорогую. Экономическая эффективность, как можно убедиться, довольно высока. Несомненным преимуществом данного типа гидростанций является наличие высокого напора. Это позволяет устанавливать более эффективные аккумуляторы . Встречаются и станции смешанного типа. Часть установленных там гидроагрегатов способна работать в двух режимах: турбинном и насосном. Другая часть работает только в турбинном режиме. Использование таких станций позволяет накапливать большее количество воды и вследствие этого производить больше электроэнергии в периоды повышенной нагрузки.

Приливные электростанции

Приливная электростанция

Для создания экономичной приливной станции необходимы определённые природные условия. В частности, должен быть большой перепад уровней во время отлива и прилива (не менее шести метров), особенности береговой линии, которые позволяют создать плотину и водный бассейн соответствующих размеров.

На нашей планете такие места найти не так уж и просто. Это побережье американского штата Мэн, канадская провинция Нью-Брансуик, Персидский залив, отдельные регионы Аргентины, южная Англия, северная Франция, северные области европейской части России. Впрочем, даже станции, сооруженные в указанных регионах, не смогли бы достойно конкурировать с уже действующими ТЭС по стоимости производимой энергии .

Проекты приливных электростанций обычно предусматривают наличие двух бассейнов. Это верховой и низовой водоёмы. Каждый из них должен быть дополнен водопропускными отверстиями и затворами. Во время прилива верховой бассейн заполняется водой, а затем отдаёт всю воду низовому, который опорожняется при отливе.

История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики. Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития и продолжает развиваться, одаривая человека всё новыми возможностями. В данном разделе мы шаг за шагом пройдём путь, проделанный гидроэнергетикой в течение многих веков, рассмотрим этапы и особенности её развития, от водяных колёс, используемых в эпоху античности и Средневековья, до современных гидроэлектростанций, появившихся уже в двадцатом веке.

Античная и средневековая гидроэнергетика

Водяная мельница

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Гидроэнергетика в девятнадцатом столетии

Водяная турбина

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин . Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины . Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М.О. Доливо-Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока . Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тысяч километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Гидроэлектроэнергетика в двадцатом веке

ГЭС Гувера США

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 Гиговатт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

Усть-Каменогорская ГЭС

К началу двадцатого века развитие российской гидроэнергетики было весьма замедленным. Так, в 1913 году на территории Российской империи функционировало около пятидесяти тысяч гидросиловых установок. Их общая мощность составляла около миллиона лошадиных сил. При этом около семнадцати тысяч установок были оборудованы гидротурбинами .

Суммарная годовая выработка электроэнергии на всех гидроэлектростанциях не превышала тридцать пять миллионов киловатт в час при установленной мощности около 16 МВт. В то же время во многих европейских странах общая мощность составляла приблизительно 12000 МВт. Ситуация изменилась после Октябрьской революции. Новая власть хорошо понимала важность развития отрасли.

Уже 13 июня 1918 года было принято решение о начале строительства Волховской гидроэлектростанции, которая стала первым проектом советской гидроэнергетики, а её мощность равнялась 58 МВт. Уже в первые годы советской власти был разработан план электрификации страны (ГОЭЛРО), который был утверждён 22 декабря 1920 года. Одна из глав плана называлась «Электрификация и водная энергия». В ней отмечалось, что использование гидроэлектростанций может представлять выгоду в случае комплексного использования.

План предусматривал сооружение ГЭС общей мощностью в 21254 тысяч лошадиных сил. При этом в европейской части России общая мощность станций составит 7394, в Туркестане – 3020, в Сибири – 10840 тысяч лошадиных сил. Предусматривалось строительство десяти гидроэлектростанций, суммарная мощность которых составит 640 МВт.

Первым советской гидроэлектростанцией стала Днепровская гидроэлектростанция имени Ленина в Запорожье. Ещё в 1921 году Ленин подписал решение о начале строительства, а само строительство было начато в 1927 году. Запуск первого агрегата был произведён в 1932 году, а достичь проектной мощности удалось в 1939 году. Она составила 560 МВт. При возведении плотины были затоплены знаменитые пороги Днепра, что сделало реку полностью судоходной.

За несколько десятилетий Советский Союз стал одним из лидеров мировой гидроэнергетики. Например, в начале семидесятых советская гидроэнергетика по установленной мощности уступала только американской. Строительство гидроэлектростанций велось на Волге, Каме, Дону, Днепре, Свири и других крупных реках .

Это позволило превратитить их в водные магистрали Европейской части страны, существенно повысить уровень воды в реках и получить в результате целостную судоходную систему, которая соединяла между собой Каспийское, Чёрное, Азовское, Балтийское и Белое моря. К концу семидесятых годов двадцатого века были сооружены самые большие гидроэлектростанции в мире. Это Саяно-Шушенская и Красноярская, расположенные на реке Енисей, Братская и Усть-Илимская (река Ангара), Нурекская (река Вахш), Волжская.

Мировая гидроэнергетика в 21 веке

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 Гвт.

Такие страны как Норвегия, Исландия и Канада являются лидерами по выработке гидроэнергии на гражданина. Наиболее активно ведет строительство гидроэлектростанций Китай. Для этого государства гидроэнергия является наиболее перспективным источником энергии и, очевидно, он в скором времени станет основным. Кроме того, именно Китай является мировым лидером по количеству малых гидроэлектростанций.

Наиболее крупные ГЭС расположены на территории Китая (Санься на реке Янцзы, Бразилии (Итайпу на реке Парана и Тукуруи на реке Токантин), Венесуэлы (Гури на реке Карони). Развивается гидроэнергетическая отрасль и в России. Сегодня на территории Российской Федерации функционируют сто две гидроэлектростанции.

Суммарная мощность всех работающих российских гидроагрегатов – сорок пять миллионов киловатт (это пятое место в мире). При этом доля гидроэлектростанций в общем объёме получаемой российской энергии составляет двадцать один процент. А это не так уж и много, особенно, учитывая то, что Россия находится на втором месте по экономическому потенциалу гидроресурсов (около 852 миллиардов киловатт в час). Но освоены эти ресурсы лишь на двадцать процентов.

Перспективы гидроэнергетики

Без сомнения, энергообеспечение – одна из наиболее актуальных проблем человечества. Мировые запасы нефти и газа стремительно уменьшаются и недалёк тот день, когда они будут полностью исчерпаны. Это понимают все, и поэтому с каждым годом всё большее число специалистов изучает возможности их равноценной замены. Сегодня существует несколько направлений альтернативной энергетики: использование солнечной энергии и энергии ветра, биоэнергетика, геотермальная энергетика.

Каждое их этих направлений отличается определёнными достоинствами и недостатками. И поэтому необходимо определиться: какой альтернативный источник энергии лучше всего подходит для удовлетворения нужд человечества и в то же время наносит минимальный ущерб природе.

Потенциал мировой гидроэнергетики

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков , ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10 000 – 20 000 миллиардов киловатт в час (приведены данные ООН).

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вместе с тем, не теряет актуальность вопрос: какую долю этого природного богатства человечество может позволить себе использовать? Для ответа на этот вопрос необходимо представлять возможные последствия работы гидроэлектростанций для окружающей среды.

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в водохранилищах и развивается рыболовство.

Экологические аспекты использования гидроэнергетики

Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко.

. Вы можете помочь проекту, исправив и дополнив её.

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

С давних времен люди пользовались движущей силой воды. Мололи муку на мельницах, колеса которых приводились в движение потоками воды, сплавляли тяжелые стволы деревьев вниз по течению, в общем использовали гидроэнергию для решения самых разных задач, включая промышленные.

Первые ГЭС

В конце 19 века, с началом электрификации городов, гидроэлектростанции начали очень резко завоевывать популярность в мире. В 1878 году в Англии появилась первая в мире гидроэлектростанция, которая питала тогда всего одну дуговую лампу в картинной галерее изобретателя Уильяма Армстронга… А к 1889 году только в Соединенных Штатах гидроэлектростанций насчитывалось уже 200 штук.

Одним из важнейших шагов в освоении гидроэнергетики стало сооружение в 1930-е годы в США Плотины Гувера. Что касается России, то здесь уже в 1892 году, в Рудном Алтае на реке Березовка, была построена первая четырехтурбинная гидроэлектростанция мощностью 200 кВт, призванная обеспечить электричеством шахтный водоотлив Зыряновского рудника. Так, с освоением человечеством электричества, гидроэлектростанции ознаменовали собой стремительный ход промышленного прогресса.

Сегодня современные гидроэлектростанции - это огромные сооружения на гигаватты установленной мощности. Однако принцип работы любой ГЭС остается в целом достаточно простым, и везде почти полностью одинаковым. Напор воды, направленный на лопасти гидротурбины, приводит ее во вращение, а гидротурбина в свою очередь, будучи соединена с генератором, вращает генератор. Генератор вырабатывает электроэнергию, которая и .

В машинном зале гидроэлектростанции установлены гидроагрегаты, которые преобразуют энергию потока воды в энергию электрическую, а непосредственно в здании гидроэлектростанции располагаются все необходимые распределительные устройства, а также устройства управления и контроля работы ГЭС.


Мощность гидроэлектростанции зависит от количества и от напора воды, проходящей через турбины. Непосредственно напор получается благодаря направленному движению потока воды. Это может быть вода накопленная у плотины, когда в определенном месте на реке строится плотина, или же напор получается благодаря деривации потока, - это когда вода отводится от русла по специальному туннелю или каналу. Так, гидроэлектростанции бывают плотинными, деривационными и плотинно-деривационными.

Наиболее распространенные плотинные ГЭС имеют в своей основе плотину, перегораживающую русло реки. За плотиной вода поднимается, накапливается, создавая своего рода водяной столб, обеспечивающий давление и напор. Чем выше плотина - тем сильнее напор. Самая высокая в мире плотина имеет высоту 305 метров, это плотина на Цзиньпинской ГЭС мощностью 3,6 ГВт, что на реке Ялунцзян в западной части провинции Сычуань на Юго-Западне Китая.

Гидростанции, использующие энергию воды, бывают двух типов. Если река имеет небольшое падение, но относительно многоводна, то при помощи плотины, перегораживающей реку, создают достаточную разность уровней воды.

Над плотиной образуется водохранилище, обеспечивающее равномерную работу станции в течение года. У берега ниже плотины, в непосредственной близости к ней устанавливается водяная турбина, соединенная с электрическим генератором (приплотинная станция). Если река судоходна, то у противоположного берега делается шлюз для пропуска судов.

Если же река не очень многоводна, но имеет большое падение и бурное течение (например, горные реки), то часть воды отводится по специальному каналу, имеющему гораздо меньший уклон, чем река. Канал этот иногда имеет протяженность в несколько километров. Иногда условия местности вынуждают заменить канал тоннелем (для мощных станций). Таким образом создается значительная разность уровней между выходным отверстием канала и нижним течением реки.

У конца канала вода поступает в трубу с крутым наклоном, у нижнего конца которой располагается гидротурбина с генератором. Благодаря значительной разности уровней вода приобретает большую кинетическую энергию, достаточную для питания станции (деривационные станции).

Подобные станции могут иметь большую мощность и относиться к разряду районных электростанций (смотрите - ). На самых малых станциях турбина иногда заменяется менее эффективным, по более дешевым водяным колесом.

Виды ГЭС и их устройства


Кроме плотины гидроэлектростанция включает в себя здание и распределительное устройство. Основное оборудование ГЭС находится в здании, здесь установлены турбины и генераторы. Кроме плотины и здания, в ГЭС могут наличествовать шлюзы, водосбросные устройства, рыбоходы и судоподъемники.

Каждая ГЭС представляет собой уникальное сооружение, поэтому главная отличительная черта ГЭС от других типов промышленных электростанций - это их индивидуальность. Кстати, самое большое в мире водохранилище находится в Гане, это водохранилище Акосомбо на реке Вольта. Оно занимает 8500 квадратных километров, что составляет 3,6% площади всей страны.

Если по ходу русла реки имеется значительный уклон, то возводят деривационную ГЭС. Здесь нет необходимости в строительстве большого плотинного водохранилища, вместо этого вода только направляется через специально возводимые водоводные каналы или тоннели прямо к зданию электростанции.

Иногда на деривационных ГЭС устраивают небольшие бассейны суточного регулирования, позволяющие управлять напором, и таким образом влиять на количество вырабатываемой электроэнергии в зависимости от загруженности электросети.


Гидроаккумулирующие электростанции (ГАЭС) - особый вид гидроэлектростанций. Здесь сама станция предназначена для того, чтобы сгладить суточные перепады и пиковые нагрузки на , и тем самым повысить надежность работы электросети.

Такая станция способна работать как в генераторном режиме, так и в накопительном, когда насосы закачивают воду в верхний бьеф из нижнего бьефа. Бьефом, в данном контексте, называется объект типа бассейна, являющийся частью водохранилища, и примыкающий к гидроэлектростанции. Верхний бьеф располагается по течению выше, нижний - ниже по течению.

Примером ГАЭС может служить водохранилище Таум Саук в Миссури, возведенное в 80 километрах от Миссисипи, вместимостью 5,55 млрд. литров, позволяющее энергосистеме обеспечить пиковую мощность в 440 МВт.



mob_info